We are proud to present to you the Saint Peter 2015 Consumer Confidence Report.

The City of Saint Peter is dedicated to providing residents with high-quality, safe, reliable drinking water that meets every federal and state water quality requirement. This report contains information about the water source, treatment, consumer demand, contaminants detected and other information of interest. The City of Saint Peter is issuing the results of monitoring done on its drinking water for the period from January 1 to December 31, 2015.

The purpose of this report is to advance consumers’ understanding of drinking water and heighten awareness of the need to protect precious water resources.

We are happy to report that no contaminants were detected at levels that violated federal drinking water standards. However, some contaminants were detected in trace amounts last year. (Some contaminants are sampled less frequently than once a year; as a resolute, not all contaminants were sampled for 2015. If any of these contaminants were detected the last time they were sampled for, they are included in the table on page three along with the date that the detection occurred.

As new challenges to drinking water safety emerge, we remain vigilant in meeting source water protection, water conservation and community education goals while continuing to serve the needs of all our water users.
Source and Treatment of Water

The City of Saint Peter provided 405,000,000 gallons of high quality drinking water to its residents from a groundwater source: nine wells ranging from 130 to 780 feet deep, that draw water from the Tunnel City-Wonewoc, Jordan, Wonewoc Sandstone, Mt. Simon, and Mt. Simon-Hinckley aquifers. Groundwater treated using reverse osmosis is delivered daily to the citizens of Saint Peter. The Broadway Water Treatment Plant went online March 30, 2011. The Saint Julien Water Treatment Plant went online August 16, 2011. Both treatment facilities have been designed to lower the levels of iron, manganese, nitrates, radium, chloride, sulfates, and total dissolved solids providing great tasting water that also contains less hardness. Both facilities add chlorine and fluoride to the water to enhance public health.

Groundwater often moves very slowly. Once it is contaminated, it may remain so for a long time, and maybe difficult and expensive to locate the source and remove the contaminant. Wellhead protection is a way to prevent contaminants from entering the area where drinking water is drawn. There are many things that can be done to prevent contamination such as the proper use of chemicals, stormwater management, sealing abandoned wells, security, prompt spill response, correct disposal of pharmaceuticals, chemicals, oils and all hazardous products. Specifically, community public water systems like Saint Peter’s are required to delineate, inventory, and manage an inner wellhead management zone. While a wellhead protection plan gives public water supply purveyors a useful “tool” for providing a safe drinking water supply to their customers, the long-term goals are beneficial to all residents of Minnesota. Help protect our community’s valuable drinking water resource.

The Minnesota Department of Health has determined that the source(s) used to supply your drinking water is not particularly susceptible to contamination. If you wish to obtain the entire source water assessment regarding your drinking water, please call 651-201-4700 or 1-800-818-9318 (and press 5) during normal business hours. Also, you can view it on-line at www.health.state.mn.us/divs/eh/water/swp/swa. Call 507-934-0670 if you have questions about the City of Saint Peter drinking water or would like information about opportunities for public participation in decisions that may affect the quality of the water.

Results of Monitoring

City staff works diligently to assure that the treated water in Saint Peter is SAFE to drink. No contaminants were detected at levels that exceeded the federal drinking water standards. However, some contaminants were detected in trace amounts that were below legal limits. The table that follows shows the contaminants that were detected in trace amounts last year. (Some contaminants are sampled less frequently than once a year; as a result, not all contaminants were sampled for in 2015. If any of these contaminants were detected the last time they were sampled for, they are included in the table along with the date that the detection occurred.)

Key to Abbreviations:

- **MCLG**—Maximum Contaminant Level Goal: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.
- **MCL**—Maximum Contaminant Level: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.
- **MRDL**—Maximum Residual Disinfectant Level.
- **MRDLG**—Maximum Residual Disinfectant Level Goal.
- **AL**—Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirement which a water system must follow.
- **90th Percentile Level**—This is the value obtained after disregarding ten percent of the samples taken that had the highest levels. (For example, in a situation in which 10 samples were taken, the 90th percentile level is determined by disregarding the highest result, which represents 10% of the samples.) Note: In situations in which only 5 samples are taken, the average of the two with the highest levels is taken to determine the 90th percentile level.
- **ppm**—Parts per million, which can also be expressed as milligrams per liter (mg/l)
- **ppb**—Parts per billion, which can also be expressed as micrograms per liter (ug/l)
- **nd**—No Detection
- **N/A**—Not Applicable (does not apply)
<table>
<thead>
<tr>
<th>Contaminant (Units)</th>
<th>MCLG</th>
<th>MCL</th>
<th>Level Found</th>
<th>Typical Source of Contaminant</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Range (2015)</td>
<td>Average/Result*</td>
</tr>
<tr>
<td>Fluoride (ppm)</td>
<td>4</td>
<td>4</td>
<td>.63 - 1</td>
<td>1.01</td>
</tr>
<tr>
<td>Haloacetic Acids (HAA5) (ppb)</td>
<td>0</td>
<td>60</td>
<td>nd-4.2</td>
<td>4.2</td>
</tr>
<tr>
<td>Nitrate (as Nitrogen) (ppm)</td>
<td>10.4</td>
<td>10.4</td>
<td>.55-.86</td>
<td>.86</td>
</tr>
<tr>
<td>Nitrite (as Nitrogen) (ppm) (08/08/2011)</td>
<td>1</td>
<td>1</td>
<td>N/A</td>
<td>.02</td>
</tr>
<tr>
<td>TTHM (Total trihalomethanes) (ppb)</td>
<td>0</td>
<td>80</td>
<td>7.5 - 37.8</td>
<td>37.8</td>
</tr>
</tbody>
</table>

* This is the value used to determine compliance with federal standards. It sometimes is the highest value detected and sometimes is an average of all detected values. If it is an average, it may contain sampling results from the previous year.

<table>
<thead>
<tr>
<th>Contaminant (Units)</th>
<th>MRDLG</th>
<th>MRDL</th>
<th>****</th>
<th>*****</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorine (ppm)</td>
<td>4</td>
<td>4</td>
<td>.03 - 1.34</td>
<td>.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Contaminant (Units)</th>
<th>MCLG</th>
<th>AL</th>
<th>90% Level</th>
<th># Sites Over AL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper (ppm) (06/12/2014)</td>
<td>1.3</td>
<td>1.3</td>
<td>.08</td>
<td>0 out of 30</td>
</tr>
<tr>
<td>Lead (ppb) (06/12/2014)</td>
<td>0</td>
<td>15</td>
<td>1.9</td>
<td>0 out of 30</td>
</tr>
</tbody>
</table>

**** Highest and Lowest Monthly Average
***** Highest Quarterly Average
Compliance With National Primary Drinking Water Regulations

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- **Microbial contaminants**, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- **Inorganic contaminants**, such as salts and metals, which can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- **Pesticides and herbicides**, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- **Organic chemical contaminants**, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, and septic systems.
- **Radioactive contaminants**, which can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the U.S. Environmental Protection Agency (EPA) prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. The Food and Drug Administration regulations establish limits for contaminants in bottled water which must provide that same protection for public health.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency’s Safe Drinking Water Hotline at 1-800-426-4791.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium are available from the Safe Drinking Water Hotline at 1-800-426-4791.